A CONDITION OF UNIFORM EXPONENTIAL
STABILITY FOR SEMIGROUPS

CONSTANTIN BUSE AND CONSTANTIN P. NICULESCU

ABSTRACT. The aim of this paper is to prove that the uniform
exponential stability of a strongly continuous semigroup {7'(¢)}+>0
(acting on a complex Hilbert space H) can be derived as a con-
sequence of the well behavior of its numerical range in a suitable
Orlicz space. More precisely, assuming that there exists an Orlicz
space E = (L®, p®) over R such that

limlionf[aH exp_, |lg]=0

and

HS}lllglp‘I’(|<T(-)ﬂc,$>|) < M < oo,

then the uniform growth bound wg of the semigroup verifies an
estimate of the form

wo < My = B — (2M][exp_ [|g) ™" <0

for some positive number 8. As an application, the well posedness
of an abstract infinite time Cauchy problem is discussed.

1. INTRODUCTION

Let H be a complex Hilbert space and let 1 < p < co. Recall that a
semigroup T = {T'(t) }+>o on H is called:

o weakly-LP-stable if for every x,y € H we have

/0 T (@, y) Pt < oo
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e uniformly exponentially stable if its uniform growth bound is
negative, that is
In||T(t
wo(T) := lim —n|| @l

t—o0

<0,

or, equivalently, if
|T(t)]| < Ne " for all t > 0.

for some positive constants N and v.

It is clear that each uniformly exponentially semigroup is weakly-LP-
stable. In 1983 A. J. Pritchard and J. Zabczyk [9] raised the problem
whether every weakly-LP-stable semigroup is uniformly exponentially
stable. The answer is positive and a solution can be found in [3], [11].
In this note we extend their result to the more general framework of
Orlicz spaces. In order to formulate our generalization we shall need a
preparation on Orlicz spaces. For further details the reader is referred
to [4], [5], [6], [1] and references therein.

The Orlicz spaces over R, are attached to nondecreasing convex
functions @ : [0,00) — [0,00] such that ®(0) = ®(0+) = 0 and P
is not identically 0 or oo on (0,00). We denote by L? the set of all
complex-valued measurable functions f defined on R, for which there
exists a positive A such that [ ®(A|f(t)|)dt < oo. Clearly, L* is a
linear space with respect to the usual operations and we can turn L®
into an Orlicz space by considering on it the norm p®, where

p®(f) :=inf{k >0: /000 Ok~ f(t)])dt < 1}.

If @ satisfies the As-condition i.e., there exists a positive constant C'
such that

O(2t) < CP(t) for all £ > 0,

then the dual space (L‘I’)* is also an Orlicz space. Moreover, in this
case (L?)" can be identified with L®", where

O*(t) :=sup(ts — ®(s)), t>0
s>0
is the Legendre transform of ®.
Clearly, all Lebesgue spaces LP(R,) (for 1 < p < 0o0) are examples
of Orlicz spaces which satisfy the As-condition.
We can now state our main result:

Theorem 1. Let T = {T'(t)}+>0 be a strongly continuous semigroup
acting on a complex Hilbert space H. Then T is uniformly exponentially
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stable if (and only if) it verifies the following condition
(1.1) M = sup p*(|(T()z,2)]) < oo,

|lzf|<1

with respect to an Orlicz space E = (L‘I’, pq’) whose dual space E* has
the property that

(1.2) lirglionf[ozH exp_,, ||e<] = 0.

The necessity of the condition (1.1) is straightforward. In fact, if the
semigroup T is uniformly exponentially stable, then (1.1) works for all
Orlicz spaces. The sufficiency part is detailed in the next section.

As shows the case where T is the left translation semigroup on H =
L*(R) and E = L°°(R, ), the condition (1.2) is essential for the validity
of Theorem 1.

In the special case where ®(¢) = t? (for 1 < p < o0), the result
of Theorem 1 was first proved by G. Weiss [11]. Clearly, in that
case the condition (1.2) is automatically fulfilled. Our result covers
more general Orlicz functions ® which satisfy the Aj-condition and
lim; .o, tp® (exp_,) = 0 such as ®(¢) = ¢! — t — 1. In this case

O*(t)=(t+1)In(t+1)—t

and

efat

P (exp_L) = inf{k:>0:/ @(C it < 1)
0

1 Rt 1
= inf{k >0:— 1 Ddu — — <1
inf{ 04/0 ” n(u + 1)du o S }

b
1
= sup{b>0:/ vt
0

where by is the unique solution of the following equation (in variable
x),

In(u+ 1)du < b+ a} = by,

* 1
/ Ut In(u+1)du =z + a.
0o U

The map a : z — [y “= In(u+ 1)du — 2 (from [0, 00) into [0, 00)) is
surjective and also increasing, so that its inverse is continuous. Conse-
quently a~! is bounded on [0, 1], which yields lim; o, tp® (exp_,) = 0.

J.M.A.M. van Neerven [7] has noticed that any bounded strongly
continuous semigroup (acting on a complex Hilbert space H) is uni-
formly exponentially stable if there exists a nondecreasing function
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v : Ry — Ry such that ¢(t) > 0 for t > 0 and
/ o([{T'(t)z,y)|)dt < oo, forall z,ye H.
0

We leave open the question whether the boundedness condition can
be dropped.

2. PROOF OF THEOREM 1

Proof. We already noticed that only the sufficiency part needs an argu-
ment. For this, we need the remark that the condition of boundedness
(1.1) yields

N= sup p"((T()z,y)]) < 2M < o0,
[[zl],lly[I<1

as a consequence of the polarization identity
3

> T (@ + i),z + ify).

k=0

AN

(T'(t)x,y) =

The next step is to motivate the existence of the improper integral

S

/00 w ()T (t)xdt := lim [ w*(¢)T(t)xdt,

S§—00 0

for all w* € E* and x € H. In terms of series, this limit means the
convergence of

(2.1) Z / o t)xdt

for all positive sequences (s;),, with so = 0, which are increasing to
oo. This can be derived from a classical result due to Orlicz-Pettis,
which asserts that every weakly unconditionally convergent series (in
a Banach space) is also unconditionally convergent. In fact,

N Sn+1

( /:Hu*() xdty' Zew / (BT (t)adt, )

Sl
/ e ()T () xdt, y)

n=0

WE

=

_ </08N+1

I
=)

n

WE

ei)\nX[sn,sn_H) (t)) u” (t)T(t)l‘dt, y>

< Mi|u||=[l=[ lyll

Il
=)

n
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for all z,y € H and N € N, which yields the weak unconditional
convergence of the series (2.1).
Since

/0 S u*(t)T(t):vdtH = sup

llyll<1

( / WA (BT ()t )

we get also the inequality

/OOO u*(t)T(t)a:dtH < M||z||||u*]| 5=

As well known, the dual space of any Orlicz space is a rearrangement
invariant Banach function space which contains the space L'(R,) N
L*(Ry). See [1], [5], [6]. Thus for each § > 0 the function exp g
belongs to E*. Moreover, if A € C and Re A > 0, then the improper
integral [ e MT(t)zdt exists for all 2 € X; necessarily, every such A
belongs to p(A) and the formula R(A, A)z = [~ e T'(t)xdt holds.
By our hypothesis (1.2), we can choose a 2y € C such that § =

Rezy > 0 and
M, := f — 2M||exp_g||z+) "' < 0.

Then for every A € C with M,, < ReX < 0 the point \g = Rezy + i
Im A belongs to p(A). Since

IA—=Xo| = ReXg—Rel < (2M||exp_g|[p+)~"
< 1 < 1
— 2[R0, A [[R(Ao, A
this yields that A also belongs to p(A) and
R(N\g, A
18O A < I gy

L= A= Aoll[ (Ao, A)|

Finally, the Gearhart-Priiss Theorem (see [2], [10]) allows us to con-
clude that wo(T) < M,, < 0. O

3. APPLICATIONS

In this section we consider a linear operator A : D(A) C H —
H acting on the complex Hilbert space H, that generates a strongly
continuous semigroup T = {7T'(t) };>o0.

Theorem 2. Under the above assumptions on A, if moreover

(1) @ verifies the Ag-condition and M = HSWEI P (T (), z)|) < oo
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(i) the corresponding dual function ®* is strictly increasing on [0, 00)
and
hmﬁ)nf[ozH €XpP_, ||L‘I>*] = 07

then for each b € H and each u*(-) in L®", the following infinite time
Cauchy Problem

z(t) = Ax(t) +bu*(—t) fort<0
(A, b, —00,0) : { gj(—oo% = tEr_flex(t) :(o, )

has a unique solution on (—oo, 0.

Proof. First we shall prove that the function ¢ given by the improper
integral
t t

o(t) = / T(t —1)u*(—7)bdT = SEIPOO T(t —7)u*(—7)bdr,

is correctly defined on (—o0, 0]. In fact, using the Holder inequality, for
all t; <ty in (—o0,t], we get

< sup / T~ )b,y - Jut (—)dr

llyll<1 Jt,

/ Tt — Pyt (—r)bdr

t1

< sup / T ()b y)] - [ — )|dp

—tg

< sup / Lo tieal (DT ()b, )] - Ju* (0 — )| dp

[lyl[<1
< 2M[b[ 0% (Lj—tgp—ta] ()™ (- = 1))).

Taking into account that L®" is rearrangement invariant, we have the
relations

*

PP (Lo O =) = p% (Uy g (t + ) u* ()]
= P (Qetmtoemg () ()]
Put s; = —t —ty and s9 = —t — t1. Then 0 < —t < 51 < s9 < 00 and,
conversely, all such pairs sy, s5 come this way.
Given 0 < n < 1, the function %u*() belongs to L®", which yields
I @*(%|u* (7))dT < 0o. Therefore there exists ¢ > 0 such that for all
0 < 81 < 89 < 00 we have

S92 1 o0 1
/ o <—|u*(7’)|) dr — / o (1[SI,SQ]<7)—yu*(T>y> dr<n<1.
S1 n 0 n

This gives us
pé (1[—t—t2,—t—t1](')|u*(')|) <,
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whenever t; < ty < —4. In fact,

52 1 oo 1
ne{k>0: / o <E\u*(7)\) dr = / o~ <1[51’52}E\u*(7)\) dr < 1}.
S1 0

Clearly, ¢ verifies the integral equation
t
z(t) =T(t — s)x(s) +/ T(t —7)u*(—7)bdr, s<t<O0.

Moreover, for each t < 0 we have
t
Jotoll = | [t~y (-rpar

— e / T Ty - u (o — 1)ldp

llyll<1
w (- =) = % (L0 () ()])-

On the other hand p®" (1j_400)(*)|u*(+)|) — 0 as ¢t — —oc. Indeed, for
1 > ¢ > 0 arbitrarily fixed and t < 0 sufficiently small, we have

/OOO o (1[_7&700)(5) |u*5(8)|> ds — /j o* GW(S)') e

Then tlizn ¢(t) = 0, which ends the proof of the fact that ¢ is a
solution of the problem (A, b, —o00,0). O

< 2M][pllp" (

Theorem 3. Assume that ® satisfies the condition (1.2). If for each
b € H and each u*(-) € (L®)* the infinite time Cauchy Problem
(A, b, —00,0) has a unique solution, then the semigroup generated by
A is uniformly exponentially stable.

Proof. Let E the set of all H-valued bounded and continuous functions
g defined on (—o0,0]. Endowed with the norm |g|g := sup |g(t)], the
t<0

set E becomes a Banach space. Let b € H and h > 0 be fixed and
denote by x,+ the unique solution of (A,b, —00,0). We will consider
the bounded linear operators P and (), defined by:

u* s Qut =2, : (L*)* — E and g — Pg:=g(0): E — H.

Since PQ is bounded we infer the existence of a positive constant K
such that

0
||/ T(—7)u*(—7)dr|| < Kp|[u*||(zey- for all u* € (L*)*.
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Then for each u* € (L?)* with u*(s) = 0 for all s > h, we have that
T
|/ (T(7)b, yyu*(1)d7| < Kp|[u™|| ey for all y € H, |[y|| < 1,
0

and because (L?)* is a Banach function space, the previous inequality
actually works for all u* € (L*)*. Equivalently,

[ o) T @by (de] < il
0

for all y € H, ||y|| <1, and all u* € (L?)*. Now it is easy to see that
P Lom(IT b, y))) < Ky forall y € H, [lyl] < 1.
Therefore
PP(KT(),y)|) < Ky forally € H, ||yl <1,

and from Theorem 1 we can conclude that the semigroup T is uniformly
exponentially stable. 0

Assume that for each 2,y € H the map (T'(-)x, y) defines an element
of L®. Then the map given by the formula,

(@,y) = (T()w,y) : H x H— L*

is a continuous sesquilinear function (linear in the first variable and
anti-linear in the second one). By the Closed Graph Theorem we get
the existence of a positive constant M such that

PP (T )z, y)) < Mllz]] - |lyll - for all 2,y € H.

This shows that the condition (1.1) can be replaced by the following
one,

(3.1) /Ooo B(|(T(#)a, )| )dt < o0, for all z,y € H.

We conclude our paper with an example.

Let H = L?[0,7] and A : D(A) C H — H given by Arx = %,
where the domain D(A) consists of all absolutely continuous functions
x(+) defined on [0, 7], which verify the following three conditions: 1)

x(0) = x(m) = 05 i) the first derivative ‘;—fg is absolutely continuous

on [0,7]; 7i7) the second derivative % belongs to H. With the above
notations, for each u*(-) € (L®)* and each b(-) € H, the infinite time
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Cauchy Problem
WS = TGO L wr(—1)b(€) for t € (—00,0], € € (0,7)

Jim [T y(t,€)PdE =0

has a unique solution. Indeed, the uniform growth bound wq(T) of the
semigroup T generated by A is equal to —1 and condition (3.1) applies
(due to the fact that ® is a convex function).
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